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Abstract Introduction

This paper presents representative results from an

aeroelastic code (TURBO-A.E) based on an

Euler/Navier-Stokes unsteady aerodynamic code

(TURBO). Unsteady pressure, lift, and moment

distributions are presented for a helical fan test

configuration which is used to verify the cede by

comparison to two-dimensional linear potential (flat

plate) theory. The results are for pitching and

plunging motions over a range of phase angles. Good

agreement with linear theory is seen for all phase
angles except those near acoustic resonances. The

agreement is better for pitching motions than for

plunging motions. The reason for this difference is

not understood at present. Numerical checks have

been performed to ensure that solutions are

independent of time step, converged to periodicity,

and linearly dependent on amplitude of blade motion.

The paper concludes with an evaluation of the

current state of development of the TURBO-AE code

and presents some plans for further development and
validation of the TURBO-AE code.
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There is an ongoing effort to develop technologies to

increase the fuel efficiency of commercial aircraft

engines, improve the safety of engine operation,

reduce the emissions, and reduce engine noise. With

the development of new designs of ducted fans,

compressors, and turbines to achieve these goals, a

basic aeroelastic requirement is that there should be

no flutter or high resonant blade stresses in the

operating regime. In order to verify the aeroelastic

soundness of the design, an accurate prediction of the
unsteady aerodynamics and structural dynamics of

the propulsion component is required. The complex

geometry, the presence of shock waves and flow

separation makes the modeling of the unsteady

aerodynamics a difficult task. The advanced blade

geometry, new blade materials and new blade

attachment concepts make the modeling of the

structural dynamics a difficult problem.

Computational aeroelastic modeling of fans,

compressors, and turbines requires many simplifying

assumptions. For instance, flutter calculations are

typically carried out assuming that the blade row is

isolated. This simplifies the structural dynamics

formulation and the unsteady aerodynamic

calculations considerably.

For an isolated blade row flutter calculation, the

modeling of the unsteady aerodynamics is the biggest

challenge. Many simplifying assumptions are made
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inthe modeling ofthe unsteady aerodynamics.In the

past,panel methods based on linear compressible

small-disturbancepotentialtheoryhave been used to

model the unsteady aerodynamics and aeroelasticity

of fans in subsonic flow; see for example [1,2]. The

major limitations of this type of analysis are the
neglect of transonic, vortical, and viscous flow effects

in the model. These inherent limitations in the model

preclude its use in a majority of practical

applications. A full potential unsteady aerodynamic

analysis has been used with a modal structural

dynamics method to model the aeroelastic behavior of

fan blades [3,4]. Although the full potential

aerodynamic formulation is able to model transonic
effects (limited to weak shocks), the vortical and

viscous effects are still neglected. For example, the

blade tip vortex, or a leading-edge vortex is not

modeled. Recently, researchers [5-10] have also

developed inviscid and viscous unsteady aerodynamic

analyses for vibrating blades.

For aeroelastic problems in which viscous effects play

an important role (such as flutter with flow

separation, or stall flutter, and flutter in the presence

of shock and boundary-layer interaction), a more

advanced aeroelastic computational capability is

required. The authors of this paper have earlier
presented [11] some results from the TURBO-AE
aeroelastic code. Initial calculations were restricted

to in-phase (zero phase angle) blade motions and

inviscid flow. In a later paper [12], results were

presented for zero and non-zero phase angle motions

and viscous flow. In these calculations, multiple

blade passages were modeled for non-zero phase
angle motions. Most recently [13], results have been

presented using a single blade passage with phase-
lag periodic boundary conditions to model arbitrary

phase angle motions.

This paper presents unsteady pressure, lift, and
moment distributions due to blade vibration over a

range of phase angles for verification of the TURBO-

AE aeroelastic code. For non-zero phase angle

motions, phase-lag periodic boundary conditions are
used. The configuration selected is a helical fan. The

geometry and flow conditions are chosen to minimize

non-linear and three-dimensional effects since the

intent is to verify the code by comparison with two-

dimensional linear potential (flat plate) theory.

Aeroelastic Code - TURBO-AE

This section briefly describes the aeroe]astic code

(TURBO-AE); previous publications [11-13] provide

additional details. The TURBO-A_ code is based on

an unsteady aerodynamic Euler/Navier-Stokes code

(TURBO), developed separately [14,15]. The TURBO

code provides all the unsteady aerodynamics to the
TURBO-AE code.

The TURBO code was originally developed [14] as an

inviscid flow solver for modeling the flow through

turbomachinery blade rows. Additional developments

were made [15] to incorporate viscous effects into the

model. This Reynolds-averaged Navier Stokes

unsteady aerodynamic code is based on a finite

volume scheme. Flux vector splitting is used to
evaluate the flux Jacobians on the left hand side of

the governing equations [14] and Roe's flux difference

splitting is used to form a higher-order TVD (Total

Variation Diminishing) scheme to evaluate the fluxes

on the right hand side. Newton sub-iterations are

used at each time step to maintain higher accuracy.

Symmetric Gauss-Seidel iterations are applied to the

discretized equations. A Baldwin-Lomax algebraic
turbulence model is used in the code.

The TURBO-AE code assumes a normal mode

representation of the structural dynamics of the

blade. A work-per-cycle method is used to determine

aeroelastic stability (flutter). Using this method, the
motion of the blade is prescribed to be a harmonic

vibration in a specified in-vacuum normal mode with

a specified frequency (typically the natural

frequency). The work done on the vibrating blade by

aerodynamic forces during a cycle of vibration is

calculated. If work is being done on the blade by the

aerodynamic forces at the end of a vibration cycle, the

blade is dynamically unstable, since it will result in
extraction of energy from the flow, leading to an

increase in amplitude of oscillation of the blade.

The inlet/exit boundary conditions used in this code
are described in [16-18]. For cases in which the blade

motions are not in-phase, phase-lag periodic
boundary conditions based on the direct store method

are used.

Results

In this section, results are presented which serve to

verify the TURBO-AE code. The test configuration

selected is a helical fan[16]. This configuration

consists of a rotor with twisted flat plate blades

enclosed in a cylindrical duct with no tip gap. This

configuration was developed by researchers [16] to

provide a relatively simple test case for comparison
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wish:wo-dimensionalanalyses.The_eometD"issuch
thatthree-dimensionalityoftheflowisminimized.

The parameters of this three-dimensional

configuration are such that the mid-span location

corresponds to a flat plate cascade with a stagger

angle of 45 deg. and unit gap-to-chord ratio operating
in a uniform mean flow at a Mach number of 0.7

parallel to the blades. The rotor has 24 blades with a

hub/tip ratio of 0.8. The inlet flow (a_xial) Mach

number used in this calculation is 0.495, which

results in a relative Mach number of approximately

0.7 at the mid-span section. The results presented
are for inviscid runs of the TURBO-AE code.

The grid used for the calculations is 141xllx41 in

one blade passage. On each blade surface, 81 points

are located in the chordwise direction and 11 points

in the spanwise direction. The inlet and exit
boundaries are located at an axial distance of

approximately 0.7 chord lengths from the blade

leading and trailing edges. To begin, a steady

solution is obtained for this configuration. The steady
flowfield consists of uniform flow at each radial
location.

Aeroelastic calculations are performed starting from

the steady solution. Calculations have been

performed for harmonic blade vibration in plunging
and pitching modes, separately. The pitching is about

the mid-chord. The prescribed mode shapes are such

that the amplitude of vibration does not vary along

the span. This choice of mode shapes is meant to

reduces the three-dimensionality of the unsteady
flowfield for ease of comparison with two-dimensional

analyses.

The vibration frequency is selected so that the non-

dimensional reduced frequency based on blade chord

is 1.0 at the mid-span. A study was performed to

determine the sensitivity of numerical results to the

number of time steps used in each cycle of blade

vibration. Calculations were done with 100, 200, and

300 time steps per cycle of vibration for 0 deg. phase

angle plunging motion. The time step was varied so

as to keep the vibration time period (or frequency)

fixed. Figure 1 shows the work-per-cycle from this

study. As the flowfield reaches periodicity, it can be

seen that the results are nearly identical for 200 and

300 time steps per cycle. These results differ slightly

from the results for 100 time steps per cycle. Figure
2 shows the unsteady pressure difference for the

same three numbers of time steps per cycle. The

results for 200 and 300 time steps per cycle are

indistinguishable. Based on such calculations, it was

determined that 200 time steps per cycle provided

adequate temporal resolution for the selected

vibration frequency. All results presented here have

been obtained using 200 time steps per cycle.

The non-dimensional time step used in the

calculations (with 200 time steps per cycle) is 0.045,
which results in a maximum CFL number of 60.5.

The amplitude of blade vibrations in the calculation

is a pitching amplitude of 0.2 deg. or a plunging
amplitude of 0.1% chord. In all cases, calculations

were continued for a number of cycles of blade

vibration to allow the flowfield to become periodic.

Initial calculations with phase angles of 0, 45, 90,

135, 180, 225, 270, and 315 deg. were continued for

15 cycles of blade vibration to ensure periodicity.

Later calculations with intermediate phase angles

(22.5, 67.5 ..... and 337.5 deg.) were continued only
for 10 cycles of blade vibration due to insufficient

computational resources. In an earlier study [13], it

was shown that, for the various phase angles studied,
the flowfield became periodic after about 7-10 cycles

of blade vibration. Hence, the 10 or 15 cycles used in

the present work were considered adequate to reach
periodicity.

Figure 3 shows the unsteady moment about mid-

chord (in complex form) for pitching blade motion
about the mid-chord. These results are from the mid-

span location and were calculated using the first

harmonic of the unsteady blade surface pressure

difference. Semi-analytical results from two-

dimensional linear potential (flat plate) theory [19]
are included for comparison.

The overall level of agreement between TURBO-AE

results and linear theory is very good, with

exceptions to be discussed in the following paragraph.
For subsonic flows and small amplitude of blade

motions, it is expected that there will be no

significant difference between the Euler and linear

potential results. Hence, the observed agreement is

not surprising and provides a basic verification of the
TURBO-AE code. It may be noted that the

parameters of the present configuration were

selected [16] to allow exactly this type of a
verification by comparison to two-dimensional

analyses.

In Figure 3, some deviation from linear theory is seen

in the results for phase angles of 112.5 and 135 deg.,
and to a lesser extent for phase angles of 157.5 and

315 deg. All these phase angles fall near conditions of
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acousticresonance(or cut-offconditions)in the
correspondingtwo-dimensionalflat platecascade.
Theacousticresonancesoccurat phaseanglesof
107.3 and 330.6 deg.; these values are marked on the

phase angle axis of Figure 3 for reference. The phase

angles between these resonances are associated with

sub-resonant [20] (cut-off) conditions in which all

disturbances attenuate away from the cascade. No

disturbances propagate in the upstream or
downstream directions under sub-res0nant

conditions. The phase angles between 0 and 107.3

deg. and between 330.6 and 360 deg. are associated

with super-resonant (cut-on) conditions in which at

least one disturbance propagates in either the far

upstream or downstream direction.

The significance of the sub-resonant and super-

resonant conditions to computational aeroelasticity

can be explained as follows. Since the typical
computational domain does not extend very far from

the blade row or cascade, the inlet/exit boundary

conditions must minimize (or eliminate) the

reflection of disturbances generated by the vibration

of the blades. For sub-resonant conditions, it may be

possible to reduce the reflected disturbances by

moving the boundary farther away from the blade
row. This is not possible for super-resonant

conditions. From Figure 3, it can be seen that the

results from TURBO-AE agree well with linear

theory for both sub-resonant and super-resonant

conditions. It may be also recalled that the

computational inlet/exit boundaries are located quite

near (0.7 axial chord lengths from leadlng/trailing

edges) the blade row in the present calculations.

Figure 4 shows the unsteady lii_ (in complex form) for

plunging blade motion. As noted for the pitching

results, these results are also from the mid-span

location and were also calculated using the first

harmonic of the unsteady blade surface pressure

difference. Results from linear potential theory are

included in Figure 4 for comparison. The overall level

of agreement with linear theory is good, but not as

good as that for pitching motion (Figure 3). The
source of such a difference between the plunging and

pitching results is not understood. However, such

differences in agreement have been noted by other

researchers [16,17] for a different configuration. In

addition, deviations are observed close to the acoustic

resonances, as for pitching.

Results are presented for phase angles values

between 0 and 360 deg. in steps of 22.5 deg. In each

case, the linear theory results are included for

comparison. In most cases, the agreement with linear

theory is very good. The exceptions occur at phase

angles near acoustic resonance conditions, as noted

earlier in the description of the unsteady moment

(Figure 3). It is worth noting that, in this case, the

integrated results in Figure 3 accurately represent

the level of agreement with linear theory, without

obscuring any differences in the details of the

pressure distributions.

Figure 6 shows the unsteady blade surface pressure

difference (in complex form) for plunging blade

motion. The level of agreement with linear theory is

not as good as for pitching, as reflected in the

unsteady lift (Figure 4). The most serious deviations

from linear theory are restricted to the phase angles
near conditions of acoustic resonance.

Some of the results for plunging motion (Figure 6)

show an irregular (unsmooth) variation in the

unsteady pressure distribution which is not seen in

any of the results for pitching motion (Figure 5). This
uneven variation can be seen in the plunging results

in Figures 6b, 6d, 6f, 6h, 6j, 61, 6n, and 6p for phase

angles of 22.5, 67.5, 112.5 ..... and 337.5 deg. One
common characteristic of these results is that these

were all generated on a workstation and may
therefore suffer from some precision-related

numerical problem. However, it is surprising to note

tha_ the corresponding results for pitching motion
(also computed on a workstation) are quite smooth
and do not show such unevenness. A re-calculation of

selected plunging results on a super-computer does

indeed eliminate the unevenness in pressure

variation, but the pressure distributions remain

substantially unchanged from those presented in

Figure 6.

Note that all the TURBO-AE results presented are
the first harmonic components of the unsteady

variations. The higher harmonics are extremely

small for these calculations, indicating the linearity

of the unsteady flow. Previous results [12] had shown

a nonlinear dependence on amplitude for certain

cases for pitching amplitudes of blade vibration of 2

deg., but not at the 0.2 deg. amplitude used in the

present calculations.

Figure 5 shows the unsteady blade surface pressure To investigate the effect of some numerical

difference (first harmonic) at the mid:span location parameters on the results for phase angle of 112.5

for pitching blade motion about the mid-chord, deg. (where the maximum deviation from linear
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theou,-is obser':ed),thefollowingcalculationswere
done.Thenumberoftimestepspercyclewasdoubled
from200to400,witha correspondinghalvingofthe
timestep.Theunsteadypressureresultsshowedno
changeswithin plotting accuracy,indicating
adequatetemporalresolution.Similarly,thenumber
of cyclesof oscillationwasdoubledfromI0 to 20to
examinepossiblelackofperiodicity.Nochangein the
unsteadypressureresultswas observedwithin
plottingaccuracy.The deviations in the regions of

acoustic resonances may possibly be reduced by the

use of finer grids. But, such a grid refinement study
has not yet been performed.

Concluding Remarks

This is being done in collaboration with other

researchers. Also, it is necessary that the TURBO-AE

code be exercised to evaluate its ability to analyze
and predict flutter for conditions in which viscous

effects are significant. This work is also currently in

progress.
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An aeroelastic analysis code named TURBO-AE has

been developed and is being verified and validated.

The starting point for the development was an

Euler/Navier-Stokes unsteady aerodynamic code

named TURBO. Some verification has been done by
running the code for a helical fan test configuration.

Results have been presented for pitching and

plunging blade motions over a range of phase angles.
The results compare well with results from a linear

potential analysis. This agreement is expected for
subsonic flows for which the calculations were made

and for the relatively small amplitudes of blade
motion.

The agreement is not as good for plunging motion as
for pitching motion. The reason for this difference is

not understood at present. Also, deviations are

observed for values of phase angles near acoustic
resonance conditions. The solutions are shown to be

independent of the time step, converged to

periodicity, and linearly dependent on amplitude of

blade motion. This test case provides a basic
verification of the TURBO-AE code. It also shows the

need to perform a grid refinement study as a possible

way to resolve the deviations from linear theory near

acoustic resonance conditions and for plunging
motion. For plunging motion, some results are

affected by precision-related numerical problems, as
seen from uneven pressure distributions. But, the

elimination of these precision problems does not

change the pressure distributions substantially,

apart from making the variations smooth.

rt is necessary to further verify the TURBO-AE using

different standard test configurations to compare
with experimental data and other code predictions.
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Figure 5 (continued): Unsteady pressure difference (first harmonic) for pitching motion.
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Figure 6: Unsteady pressure difference (first harmonic) for plunging motion.
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Figure 6 (continued): Unsteady pressure difference (first harmonic) for plunging motion.
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